ScienceDaily (Mar. 3, 2010) — A straight line may be the shortest path from A to B, but it's not always the most reliable or efficient way to go. In fact, depending on what's traveling where, the best route may run in circles, according to a new model that bucks decades of theorizing on the subject. A team of biophysicists at Rockefeller University developed a mathematical model showing that complex sets of interconnecting loops -- like the netted veins that transport water in a leaf -- provide the best distribution network for supplying fluctuating loads to varying parts of the system. It also shows that such a network can best handle damage.

The findings could change the way engineers think about designing networks to handle a variety of challenges like the distribution of water or electricity in a city.

Operations researchers have long believed that the best distribution networks for many scenarios look like trees, with a succession of branches stemming from a central stalk and then branches from those branches and so on, to the desired destinations. But this kind of network is vulnerable: If it is severed at any place, the network is cut in two and cargo will fail to reach any point "downstream" of the break.

## No comments:

## Post a Comment